Course Website: http://www.uccs.edu/rcascara/1Math340

eCollege/eCompanion: http://www.uccs.edu/online/loci.htm

Introduction: Differential Equations

\[t = \text{independent variable} \]
\[x = \text{dependent variable} \]
\[X = x(t) \]

Often times, \(x = x(t) \) is given by a rule

\[\frac{dx}{dt} = \text{rate of change of } x \text{ w.r.t. } t \]

is given as a function of \(t \) and/or \(x \)

\[\frac{dx}{dt} = f(t, x) \]

\(1^{st} \text{ order differential eq.} \)

\[\frac{dx}{dt}, \ x(t), \ x \]
Ex: Exponential growth:

\[x(t) = \text{population at time } t \]

\[\frac{dx}{dt} = ax, \quad a = \text{constant } (a > 0) \]

is a 1st order differential eq:

\[\frac{dx}{dt} = f(x) \]

Q: What are the solutions of \(\frac{dx}{dt} = ax \)?

\[x(t) = e^{at} \]

\[x'(t) = ae^{at} \]

\[= a \cdot x(t) \]

One can check

\[x(t) = 3e^{at} \quad \text{also solves } \quad x' = ax \]

\[x(t) = ce^{at}, \quad c = \text{arbitrary constant} \]
If the original problem indicates an "initial condition"
\[X(0) = 1247 \]
then we are interested in finding THE solution which satsfies this property
\[X(t) = C e^{at} \]
At \(t = 0 \) :
\[X(0) = C e^{a \cdot 0} = C \cdot 1 = C \]
\[1247 = C \]

\[\Rightarrow X(t) = 1247 e^{at} \] is the solution of the initial value problem \(\frac{dx}{dt} = ax \), \(X(0) = 1247 \)

Easiest differential eq to solve:

\[\frac{dx}{dt} = f(t) \Rightarrow x(t) = \int f(t) \, dt \]

\(\text{Ex: Solve } \frac{dx}{dt} = 3t^2 \Rightarrow x(t) = \int 3t^2 \, dt \)

\[x(t) = t^3 + C \]
\[\text{Ex: Solve } \frac{dx}{dt} = e^{-t^2} \Rightarrow x(t) = \int e^{-t^2} \, dt \]

cannot be explicitly written in terms of elementary functions; polynomials \(t, t^2, 3t^5 + 2t + 4 \),

rational functions \(\frac{t + 2}{t^2 + 4} \),

exp, log,

trig functions \(\sin, \cos, \tan \),

inverse trig \(\sin^{-1}, \cos^{-1}, \tan^{-1} \).

Given an initial condition

\[x(1) = 3 \]

Solve \(\frac{dx}{dt} = e^{-t^2} \). (use definite integrals)

\[x(t) = \int_1^t e^{-s^2} \, ds + C \]

When \(t = 1 \Rightarrow 3 = x(1) = \int_1^1 e^{-s^2} \, ds + C \)

\[3 = C \]

\[t \quad x(t) = 3 + \int_1^t e^{-s^2} \, ds. \]
Applications:

\[x(t) = \text{position at time } t \]

\#25 (page 12) \[v(t) = \frac{dx}{dt}(t) = \text{velocity (speed) at time } t \]

\[a(t) = \frac{d^2x}{dt^2}(t) = \text{acceleration at time } t \]

Given

\[v(0) = 60 \text{ (km/h)}, \quad x(0) = 0 \]

\[a(t) = -2500 \text{ (km/h^2)} \text{ for all } t \]

**determine the stopping distance } x(t^*) \text{ when } v(t^*) = 0.\]

\[a(t) = \frac{d^2x}{dt^2} = -2500 \implies v(t) = \frac{dx}{dt} = \int -2500 \, dt \]

\[\frac{dx}{dt} = -2500t + c_1 \]

\[x(t) = \int (-2500t + c_1) \, dt \]

\[= -1250t^2 + c_1 t + c_2 \]

\[c_1, c_2 = ? \]
Match Initial conditions

\[v(0) = 60 \implies 60 = -2500 \cdot 0 + c_1 \]
\[\implies c_1 = 60 \]

\[x(0) = 0 \implies 0 = 0 + 0 + c_2 \implies c_2 = 0 \]

\[\implies x(t) = -1250 \cdot t^2 + 60 \cdot t \]

To find the stopping time \(t = t^* \)

\[0 = v(t) = -2500 \cdot t + 60 \]

\[2500 \cdot t = 60 \]

\[t^* = \frac{60}{2500} = 0.024 \text{ (h)} \]

Stopping distance

\[x(t^*) = -1250(t^*)^2 + 60 \cdot t^* \]

\[= 0.72 \text{ (km)} \]

First truly relevant class of problems.
Separable equations (1st order)

\[\frac{dx}{dt} = \frac{x^2 \cdot \cos t}{\text{function of } x \text{ only}} \]

Separate the variables:

\[\int \frac{dx}{x^2} = \int \cos t \, dt \]

\[-\frac{1}{x} = \sin t + C \]

\[\frac{1}{x} = - (\sin t + C) \]

\[x = \frac{1}{-(\sin t + C)} = - \frac{1}{\sin t + C} \]

\[x(t) = \frac{1}{C - \sin t} \]