Section 7.7 - Differential Equations

A differential equation is an equation that contains a derivative. It relates an unknown with its rate of change.

\[y = xy' \quad (1^{\text{st}} \text{ order}) \]

\[\frac{d^2 y}{dx^2} x + \frac{dy}{dx} x^2 = y \quad (2^{\text{nd}} \text{ order}) \]

The order of a differential equation is the order of the highest derivative that occurs in the equation.

The solution of a differential equation is an equation.

\[f'(x) = f(x) \]

The solution is \(f(x) = Ce^x \).

Determine whether the following are solutions of \(y'' + 2y' + y = 0 \).

a) \(y = e^t \)

Take the derivatives, plug them in, see if it works.

\[y' = e^t \]
\[y'' = e^t \]
\[e^t + 2e^t + e^t \neq 0 \quad \text{No.} \]
b) \(y = t e^{-t}\)
\[y' = t(-e^{-t}) + e^{-t} = e^{-t}(1-t)\]
\[y'' = e^{-t}(-1) + (1-t)(-e^{-t})\]
\[= -e^{-t} - e^{-t} + te^{-t} = te^{-t} - 2e^{-t}\]
\[y'' + 2y' + y = 0\]
\[te^{-t} - 2e^{-t} + 2e^{-t}(1-t) + te^{-t} \neq 0\]
\[2te^{-t} - 2e^{-t} + 2e^{-t} - 2te^{-t} \neq 0\]

Yes

\[\text{Solve } \frac{dy}{dx} = x^2 + 3x\]
\[dy = (x^2 + 3x) \, dx\]
\[y = \frac{1}{2}x^3 + \frac{3}{2}x^2 + c\]

Separable equations

A first order differential equation where \(\frac{dy}{dx}\) can be written as \(g(x) \cdot f(y)\).

\[\frac{dy}{dx} = g(x) \cdot f(y)\]
\[\frac{dy}{f(y)} = g(x) \, dx\]
\[\int \frac{dy}{f(y)} = \int g(x) \, dx\]

This will give defined implicitly in terms of \(x\).
If it's feasible, will solve for \(y\) explicitly.
Solve \(y' = xy \)

Rewrite as \(\frac{dy}{dx} = xy \)

We assume \(y \neq 0 \)

\[
\int \frac{dy}{y} = \int x \, dx \quad \text{Put all } y \text{'s on one side, } x \text{'s on other.}
\]

This comes from the case where \(y = 0 \).

\[
\ln|y| = \frac{x^2}{2} + C
\]

\[
|y| = e^{\frac{x^2}{2}} + C
\]

\[
y = \pm e^{\frac{x^2}{2}}
\]

\[
y = Ke^{\frac{x^2}{2}} \quad \text{where } K = \pm e^{C}, \quad 0
\]

p.419 #11 \(\frac{du}{dt} = 2t + \sec^2 t \)

with \(u(0) = -5 \)

\[
\int 2u \, du = \int 2t + \sec^2 t \, dt
\]

\[
u^2 = t^2 + \tan t + C
\]

\[
u = \pm \sqrt{t^2 + \tan t + C}
\]

\[
u(0) = \pm \sqrt{0^2 + \tan 0 + C} \quad \mp 5
\]
\[- \sqrt{c} = -5 \]
\[\sqrt{c} = 5 \]
\[c = 25 \]
\[n(t) = - \sqrt{t^2 + \tan t} + 25 \]

(46) 1000 L water
0.05 kg salt/L @ rate 5L/min
0.04 kg salt/L @ rate 10L/min
Solution drains @ 15L/min

How much salt after t minutes?

Let \(x(t) = \) amount of salt at time \(t \)

\[
\frac{dx}{dt} = \left(\frac{0.05 \text{ kg}}{L} \right) \left(\frac{5 \text{ L}}{\text{min}} \right) + \left(\frac{0.04 \text{ kg}}{L} \right) \left(\frac{10 \text{ L}}{\text{min}} \right) - \frac{x(t) \text{ kg} \cdot 15 \text{ L}}{1000 \text{ L} \cdot \text{min}}
\]

rate of change of amount of salt

\[
\frac{dx}{dt} = 0.25 + 0.4 - 0.015x
\]

\[
= 0.65 - 0.015x
\]

\[
\frac{dx}{dt} = \frac{650 - 15x}{1000}
\]

\[
\frac{dy}{dt} = \frac{130 - 3x}{200}
\]

\[
\frac{dx}{130 - 3x} = \frac{1}{200} \, dt
\]
\[u = 130 - 3x \]
\[\frac{du}{dx} = -3 \]
\[\frac{d(3u)}{3} = dx \]

\[-\frac{1}{3} \int \frac{du}{u} = \frac{1}{200} \int dt \]

\[-\frac{1}{3} \ln |u| = \frac{t}{200} + C \]

\[-\frac{1}{3} \ln |130 - 3x| = \frac{t}{200} + C \]

\[\text{Find } C: \text{ we know } x(0) = 0 \]

\[-\frac{1}{3} \ln |130 - 3(0)| = \frac{0}{200} + C \]

\[C = -\frac{1}{3} \ln 130 \]

\[-\frac{1}{3} \ln |130 - 3x| = \frac{t}{200} - \frac{1}{3} \ln 130 \]

\[\ln |130 - 3x| = -\frac{3t}{200} + \ln 130 \]

\[|130 - 3x| = e^{-\frac{3t}{200}} + \ln 130 \]

\[130 - 3x = \pm e^{\ln 130} e^{-\frac{3t}{200}} \]

\[-3x = \pm 130 e^{-\frac{3t}{200}} - 130 \]

We use \(x(0) = 0 \) to pick the negative root.

\[x = \pm \frac{130}{3} e^{-\frac{3t}{200}} + \frac{130}{3} \]

\[x = -\frac{130}{3} e^{-\frac{3t}{200}} + \frac{130}{3} \]

b) After 1 hour

\[x(60) = -\frac{130}{3} e^{-\frac{3(60)}{200}} + \frac{130}{3} = 25.7 \text{ kg} \]
Direction Fields (a.k.a. Slope Fields)

Direction fields allow us to roughly plot the solution of a differential equation without actually finding the solution.

Example: Sketch a direction field for \(y' = x^2 + y \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>-1</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\(y' = x^2 + y \)

Sketch the curve that satisfies \(y(1) = 1 \).

HW: 9.3 finish it
9.4
7.7